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Abstract
We study in detail the application of renormalization theory to models of
cluster aggregation and fragmentation of relevance to nucleation and growth
processes. In particular, we investigate the Becker–Döring equations, originally
formulated to describe and analyse non-equilibrium phase transitions, but more
recently generalized to describe a wide range of physicochemical problems.
We consider here rate coefficients which depend on the cluster size in a power
law fashion, but now perturbed by small-amplitude random noise. Power law
rate coefficients arise naturally in the theory of surface-controlled nucleation
and growth processes. The noisy perturbations on these rates reflect the effect
of microscopic variations in such mean-field coefficients, thermal fluctuations
and/or experimental uncertainties. In this paper we generalize our earlier work
that identified the nine classes into which all dynamical behaviour must fall
(Wattis J A D and Coveney P V 2001 J. Phys. A: Math. Gen. 34 8679–95)
by investigating how random perturbations of the rate coefficients influence the
steady-state and kinetic behaviour of the coarse-grained, renormalized system.
We are hence able to confirm the existence of a set of up to nine universality
classes for such Becker–Döring systems.

PACS numbers: 64.60.-I, 64.60.Ht, 82.20.-w

1. Introduction

The purpose of this paper is to demonstrate the robust nature of renormalization methods
in the theoretical description of nucleation and growth processes. We show that even in
the presence of random perturbations the methods presented in our previous papers [11, 19]
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provide correct asymptotic solutions. This paper thus extends and completes our earlier
published work [11, 19], wherein we derived a renormalization procedure for the Becker–
Döring equations and applied it to the case where the aggregation and fragmentation rate
coefficients are of power law form, given respectively by ar = arp, br+1 = brp, r being
the aggregation number of a cluster (that is, the number of monomer particles within it). As
previously described [11, 19], these coefficients describe the rate at which a cluster of size r

adsorbs monomer to grow to size r + 1, and the rate at which a cluster of size r + 1 sheds a
monomer; this choice is well known to be appropriate for the description of surface-limited
nucleation and growth processes [11, 19]. The Becker–Döring cluster equations are then

ċr = Jr−1 − Jr Jr = arcrc1 − br+1cr+1 (1.1)

where cr(t) denotes the concentration of clusters of size r . Here we generalize our earlier
work to consider rates given by the formulae

ar = arp + δr br+1 = brp + εr+1 (1.2)

in which the extra terms represent random perturbations to the deterministic rates, and which
will be further quantified later on. While other authors have considered the effect of noise in
such systems, the main thrust of such analyses has been to elucidate the temporal evolution
of perturbations on cluster size distribution: see, for example, the work of van Dongen and
Ernst [12, 13].

Renormalization theory has been widely applied in the analysis of equilibrium phase
transitions in statistical physics [5]. In statistical mechanics, the basic idea underlying
renormalization theory is the transition from a microscopic to a macroscopic description
of some phenomenon by the systematic filtering out of unwanted degrees of freedom. In
equilibrium phase transitions, near a critical point the system looks the same on all length
scales and this physical insight can be translated into a set of transformations which leave the
essential physical properties of the system unchanged—a procedure known as renormalization.
The widely used term ‘the renormalization group’ (RG) is technically inappropriate since the
transformation loses information, and so is at most a semi-group, while the procedure comprises
many different ideas and distinct methods, rather than being a formal monolithic edifice as the
definite article would imply. Of more recent interest is the application of renormalization ideas
to non-equilibrium phenomena. While the physical motivation behind the RG programme
of coarse-graining microscopic models still seems appropriate to obtain the macroscopic
properties, the complexity of far-from-equilibrium dynamics is such that in practice each
specific system must be shown to be suitably scale invariant.

Of central interest in this paper is the late-time asymptotic macroscopic behaviour of
complex dynamical systems. Bricmont and Kupiainen have taken ideas from renormalization
theory together with asymptotic methods for the analysis of diffusive processes including
nonlinear parabolic equations [1–3] while Woodruff has recast multiple-timescale problems
using renormalization ideas in [22–25]. Woodrfuff’s method allows the separation of equations
for larger-scale phenomena and small-scale dynamics from a more general theory. Velazquez
has recently used a renormalization technique in an attempt to draw together the theories of
Lifshitz–Slyozov coarsening and nucleation as modelled by the Becker–Döring equations [16].

We apply underlying concepts from renormalization theory to study the Becker–Döring
equations, which were originally formulated to study the kinetics of first-order phase
transitions. They describe the stepwise growth and fragmentation of clusters in terms of
the rates of the individual processes wherein monomer particles join or leave each cluster. The
Becker–Döring equations have recently been subjected to more conventional analysis using
matched asymptotic expansions [14, 21]. Rather than use the coarse-graining approximation,
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which emphasizes the discrete nature of the equations, that analysis concentrates on the large-
time limit where continuum approximations become valid [21]. We have recently applied
generalizations of these equations to a wide range of physicochemical processes, ranging from
those involving surfactant self-assembly [9, 10] through RNA polymer formation [7, 8, 18]
to cement setting [8, 17]. In these studies coarse-graining procedures reduce large systems
of equations down to lower-dimensional—‘mesoscopic’—dynamical systems capable of
theoretical analysis using standard techniques from the theory of differential equations. The
coarse-graining contraction procedure summarized below is analogous to other renormalization
methods used in statistical physics.

There is some similarity between our methods and Woodruff’s approach: we write the
microscopic aggregation number r of a cluster as r = (λ−1)n+1+k where n is of mesoscopic
size and k is a microscopic correction; we then aim to determine the problem on the mesoscale
in a form which does not require us to simultaneously solve the microscopic problem. Thus
microscopic detail is filtered out, but we are able to construct a simpler model which remains
valid on larger scales.

Preliminary results of this work were reported in an earlier publication [11]. In the present
paper, the particular and physically relevant example of simple power law rate coefficients is
generalized by the addition of small random perturbations. These perturbations influence
the system’s steady states and large-time kinetics and their effects are studied here in detail.
Following a brief recapitulation of the model and the coarse-graining scheme underpinning our
renormalization procedure in the remainder of this section, the perturbations are introduced
in section 2. The central part of the paper is concerned with an analysis of the effects which
these perturbations have on our renormalization procedure, and how such noise influences the
contracted description of the model (sections 3). The main issue at stake is the stability of
the models under such minor perturbations of rate coefficients: our analysis leads directly to
the identification of a set of nine generic classes of behaviour and true universality classes
whose asymptotic behaviour is independent of all microscopic details (sections 3 and 4). We
suggest physicochemical scenarios that may correspond to the generic classes identified by our
renormalization analysis; future work, especially of an experimental nature, will be helpful in
relating real-world nucleation and growth processes to these distinct universality classes.

1.1. The Becker–Döring cluster equations

In this section we give a basic outline of the Becker–Döring system of equations and their
properties (consult [11, 19] for more details). Let us start with a system in which a precursor
chemical, P , spontaneously decays to form the monomer C1, at some rate kf (p) where
p = p(t) = [P ] is the concentration of P . Further, we assume that this mechanism is
reversible, with backward rate kb(c1). The monomer is allowed to aggregate, with clusters
growing and fragmenting according to the usual Becker–Döring cluster equations. Clusters are
formed by two processes: either by the next smallest cluster size coalescing with a monomer,
or by the next largest size losing a monomer. Only such monomer–cluster interactions are
permitted in the Becker–Döring model of nucleation; cluster–cluster interactions are ignored.
The system is thus governed by

ṗ = kb(p, c1)c1 − kf (p, c1)p (1.1)

ċ1 = kf (p, c1)p − kb(p, c1)c1 − J1 −
∞∑
r=1

Jr (1.2)

ċr = Jr−1 − Jr (r � 2) Jr = arcrc1 − br+1cr+1 (1.3)
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where cr(t) represents the concentration of clusters containing r monomers, and the constants
ar , br are aggregation and fragmentation rates respectively.

In this paper we consider the case for which the monomer concentration (c1) is held
constant; thus the Becker–Döring equations we are concerned with are

ċr = Jr−1 − Jr (r � 2) Jr = arcrc1 − br+1cr+1 (1.4)

with c1 a given constant; we leave the more general formulation (1.1)–(1.3) for a future
paper. The assumption of a constant monomer concentration corresponds to the case where the
precursor chemical supplies monomer at a rate given by ṗ = −J1 − ∑∞

r=1 Jr , so that ċ1 = 0.
This assumption is made in situations where the so-called ‘pool chemical approximation’ is
valid, namely where there is a large source of monomer species entering into the system at a
rate which maintains the monomer concentration essentially fixed and independent of time.

Given the rate coefficients ar, br the partition function Qr is defined by Q1 = 1 and
arQr = br+1Qr+1. This generates the equilibrium solution cr = Qrc

r
1, which is an equilibrium

solution of the constant monomer model (1.4), and also an equilibrium solution of the
generalized system (1.1)–(1.3) for the particular concentration of precursor chemical given
by p = kbc1/kf . In both cases the equilibrium solution corresponds to zero flux, that is
Jr = 0 for all r , and the flux from precursor to monomer is also zero (kf p − kbc1 = 0).
For certain choices of rate coefficients ar, br and certain monomer concentrations c1, the
equilibrium solution will not decay to zero in the limit r → ∞. In these cases, an alternative
steady-state solution will be approached in the large-time limit. This solution is given by a
constant nonzero flux through the system, that is Jr = J independent of r . This condition
yields the family of solutions

cr = Qrc
r
1

(
1 − J

r−1∑
k=1

1

akQkc
k+1
1

)
(1.5)

which contains the equilibrium solution as the special case J = 0. The steady-state flux J is
determined by requiring the concentrations cr to decay to zero in the large-r limit, giving

J = 1

/ ∞∑
r=1

1

arQrc
r+1
1

. (1.6)

1.2. The Becker–Döring system with power law coefficients

We now proceed to consider the renormalization of Becker–Döring models in which the cluster
rate coefficients are of power law form, a dependence which is of immediate relevance to the
description of surface-limited aggregation processes. We assume the rate coefficients for
aggregation and fragmentation are respectively

ar = arp br+1 = brp (1.7)

so that the parameter θ = ac1/b is useful for classifying dynamical behaviour. The
parameter p determines the variability of rate with cluster size, with p > 0 implying that
large cluster sizes have larger aggregation and fragmentation rates, and p < 0 giving rates
which decrease with increasing cluster size. The latter case is the less physically relevant,
but is nevertheless also studied here for the sake of completeness. Typical values for p

are p = 0, 1
2 ,

1
3 ,

2
3 , 1 for the examples of linear chain polymerization, coagulation kinetics

in two space dimensions, diffusion-limited coagulation in three dimensions, surface-limited
coagulation in three dimensions, and branched chain polymerization, respectively. Since a
cluster’s volume scales with aggregation number r , if we assume that clusters are spherical
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then their surface area scales with r2/3 and their diameter with r1/3, accounting for the presence
of these exponents. More general exponents can be manifest in other situations [6].

The partition function Qr is defined by Qr = (a/b)r−1 as in the p = 0 case considered
earlier [21]. For θ � 1 the system approaches the equilibrium solution given by solving
Jr = 0, that is cr = θr−1c1. Note that this solution is independent of p, although the way
in which the equilibrium solution is approached depends on p. For θ > 1 the equilibrium
solution diverges at large r . Instead, for θ > 1 the system approaches one of a family of
time-independent solutions in which all fluxes are equal; Jr = J for all r implies

cr = θr−1c1

(
1 − J

r−1∑
k=1

1

bc1kpθk

)
. (1.8)

Since, for θ > 1 the sum is convergent in the limit r → ∞, the flux which gives the least
singular behaviour in this limit is

J = bc1

/ ∞∑
k=1

k−pθ−k. (1.9)

1.3. Coarse-graining procedure

Following the general coarse-grained contraction with constant mesh size λ in aggregation
number (so that we only retain the aggregation numbers r = �n = (n − 1)λ + 1), the kinetic
equations reduce to

ẋn = Ln−1 − Ln (r � 2) Ln = αnxnx
λ
1 − βn+1xn+1 (1.10)

αn = T a�n
a�n+1 . . . a�n+1−1 βn+1 = T b�n+1b�n+2 . . . b�n+1 (1.11)

where the retained coarse-grained cluster concentrations are relabelled as xn := cr with
x1 := c1 the monomer concentration; c1 is not involved in the coarse-graining since it has
a special role in the Becker–Döring theory [9, 11]. The parameters αn, βn are the coarse-
grained aggregation and fragmentation rates, now representing the addition or removal of λ
monomers to or from a cluster (rather than just a single monomer which occurs in the full
Becker–Döring system). This flux of matter is denoted by Ln. The concentration xn(t) is
representative of the concentrations cr for cluster sizes (�n−1 + 1) � r � �n. The factor
T represents a change of timescale which ensures that the large-time asymptotic behaviour
of the reduced system coincides exactly with the original fine-grained system in the case of
size-independent aggregation and fragmentation rates (ar = a, br = b). Technically speaking,
the need to redefine the timescale makes this procedure a dynamical renormalization.

1.4. Coarse-graining of power law coefficients

If the rate coefficients in the original formulation in equations (1.4) are determined by simple
power laws, namely ar = arp and br+1 = brp, then the coefficients in the reduced model are

αn = aλ {[(r − 1)λ + 1][(n − 1)λ + 2] · · · [nλ]}p . (1.12)

Thus

logαn = λ log a + p

λ∑
j=1

log(nλ − λ + j)

≈ λ log a + p

∫ λ

0
log(nλ − λ + x) dx

= λ log a + pλ

[
log(nλ) − 1 + (1−n) log

(
1 − 1

n

)]
. (1.13)
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For large n this asymptotes to logαn ∼ λ log a + pλ log(λn), so for simplicity we shall take
αn = (aλpnp)λ, which differs slightly at small values of n. The backward rate coefficient is
then βn+1 = (bλpnp)λ.

The new system has its own θ parameter determining the balance between aggregation and
fragmentation rates in the system which, for the moment, we shall call θ̃ = αrx

λ
1 /βr+1 = θλ,

so contraction of the system maps θ to θλ. The parameter θ thus plays an important role in
the renormalization procedure, the fixed points of this mapping corresponding to θ = 0, 1,∞;
hence such systems are of special interest to us. Also, the contraction maps coefficients with
exponent p to those with exponent pλ. Thus, following a contraction, there are only three
limits to consider: small p (namely p = 0) and large p (positive and negative).

The effect of coarse-graining a Becker–Döring system is to modify the rate coefficients,
by the map (θ, p) �→ (θλ, λp). If λ is allowed to take on large values, there are only
nine combinations of (θ, p) which merit attention, namely all possible combinations of
θ = {0, 1,∞} and p = 0, p > 0, p < 0. These nine cases and their associated fixed
points will be the basis of the analysis presented in section 3 of this paper, which follows on
from section 2 where we develop the general theory for perturbed rates for the coarse-grained
Becker–Döring system with arbitrary λ.

2. General analysis of the role of noise in coarse-grained Becker–Döring systems

2.1. Form of rate perturbations

Whilst a simple power law description of rate coefficients might give the correct general
behaviour over a large range of aggregation numbers, in any given physical system there will
be some minor deviations from such a regular description which may be due to a number of
separate effects. For instance, the presence of microscopic fluctuations and/or experimental
uncertainties suggest that one should be concerned about the stability of such theoretical
models to minor modifications in the assumed rate coefficients. Indeed, figure 2.3 of Lewis’s
contribution in the monograph [15] shows that the dependence of free energy on cluster size
can in reality be much more complicated than the simple smooth curves obtained from simple
derivations (for example by considering surface and bulk energies and assuming all clusters
are spheres, discs or needles; or by working back from simple laws for aggregation and
fragmentation rates). In mathematical terms, therefore, we wish to know whether small random
perturbations to the rates alter the results we have derived previously using renormalization
methods. The hope is that they will not have a major effect, so that the renormalization scheme
is stable with respect to such perturbations and points to the existence of true universality
classes. To analyse the effect of such perturbations, we perturb the rates from a simple power
law form by small random amounts, in such a way that all rates remain positive. Thus we
assume that the rate coefficients have the form

ar = arp + δr br+1 = brp + εr+1 (2.1)

where δr , εr are independent random variables, with small mean and small variance, so we
can assume that δr ∼ εr ∼ ν � 1 for all r . Many of the approximations used in the ensuing
analysis rely on the noise being small (ν � 1). Even with such a restrictive assumption,
by calculating the first higher-order term in the asymptotic expansion, many important and
interesting results are obtained. Later, we shall discuss cases in which ν  1 and ν = O(1).
In the nine special cases analysed below, the constants a, b in equations (2.1) are taken to be
either zero or unity. When limr→∞ ar or limr→∞ br is zero, the corresponding perturbation
(δr , εr respectively) is assumed to be strictly positive and have mean ν. Specifically, we assume
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that they are distributed according to some continuous probability distribution functions fδ(x),
fε(x) respectively, with f (·) = 0 whenever δ, ε lies more than O(ν) away from zero. The
expectation operator E[·] is defined by

E[g(δ)] =
∫

g(x)fδ(x) dx and E[g(ε)] =
∫

g(x)fε(x) dx (2.2)

the integrals being over all real x. The variance operator V[·] is defined by

V[g] = E[g2] − E[g]2. (2.3)

The conditions on the mean reduces to E[δr ] = ν and/or E[εr ] = ν for all r; in cases where
limr→∞ ar and/or limr→∞ br are unity or larger δr , εr are allowed to take negative values as
well as positive and we assume that they have zero mean and their variance is O(ν2) (e.g.
E[δr ] = 0 with E[δ2

r ] = O(ν2)). In all cases the perturbations are assumed to be small enough
that the total rate constants in equation (2.1) are all positive.

2.2. Effect of noise on cluster partition functions

We first derive and analyse the modified equilibrium and steady states which are approached in
the large-time limit. The kinetics by which these states are achieved is described in detail later
(section 2.3). First we aim to find the effect which the perturbations to the rate coefficients
(δr , εr ) have on the cluster partition function Qr in each of the nine special cases described
above. Since the partition function is defined in terms of the rate constants, the presence of
nonzero perturbations δr , εr will affect Qr . Due to the definition c1 = 1, the partition function
is identical to the equilibrium configuration. However, in cases III, VI, IX and V (if p > 1) it
is not the equilibrium solution which is approached in the large-time limit; instead the system
evolves to a steady-state solution. Perturbations to the rate coefficients (δr , εr ) thus modify the
steady-state and equilibrium solutions through the partition function, and such modifications
will be found here. In general the partition function is given by

Qr =
r−1∏
k=1

ak

bk+1
(2.4)

whilst steady-state solutions are determined by the constant flux condition J = Jr =
arcr − br+1cr+1, for all values of r . We shall pay particular attention to the large aggregation
number (r) behaviour, since this determines the observed behaviour of the system on the
mesoscopic scale, and is the region we shall probe later with the coarse-grained contraction of
this perturbed Becker–Döring system.

2.3. Effect of noise on cluster growth kinetics

The equations we study in this section are the kinetic equations with noisy coefficients, namely

ċr = (a(r − 1)p + δr−1)cr−1 − (arp + δr)cr − (b(r − 1)p + εr)cr + (brp + εr+1)cr+1

(r � 2). (2.5)

Having found the states which are approached in the large-time limit, we now find time-
dependent solutions by using large-time asymptotics. We write the solution as cr(t) =
Qrψ(r, t) or cr(t) = csss

r ψ(r, t) in order to investigate the manner in which ψ(r, t) → 1
as t → +∞. In general, this leads to

ψ̇r = ar(ψr+1 − ψr) − br(ψr − ψr−1) − J

csss
r

(ψr+1 − ψr−1) (2.6)

where J represents the steady-state flux into the system; convergence to equilibrium
corresponds to J = 0.
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2.4. Effect of perturbations on rate coefficients in the contracted system

The rate coefficients following contraction are given by

αn = T

�n+1−1∏
r=�n

ar βn+1 = T

�n+1−1∏
r=�n

br+1 (2.7)

where we shall use T = λ−pλ so that the ‘clean’ coefficients ar = arp, br+1 = brp are
mapped to αn = αnpλ, βn+1 = βnpλ with α = aλ and β = bλ (see section 1.4 and [19]).
Since the nine special cases which will be studied in detail later correspond to a, b equal to
zero or unity, following the coarse-graining contraction we are concerned with establishing
like-for-like correspondence in which α, β equal zero or unity. Here T is chosen to simplify the
algebra; an alternative expression could be used, with a consequent increase in the complexity
of the ensuing equations. Alternative choices for T merely influence the units of time, and have
no effect on the equilibrium or steady-state solutions or the effect of the rate perturbations; the
large-time asymptotics will only be affected by a linear transformation to the time variable, t .
The problems we are concerned with here involve properties of the noise following contraction:
for example, whether its amplitude is dependent on aggregation number, and its order of
magnitude as a function of ν. We now reduce the randomly perturbed coefficients from (2.1)
in the microscopic description of cluster formation to the mesoscopic description in which
αn = αnpλ +#n, βn+1 = βnpλ +En+1 with the aim of finding how the perturbations #n,En in
the contracted model depend on the perturbations δr , εr in the full description of the model. In
some cases this is trivial, since a = 0 or b = 0, and in these cases #n,En+1 is the product of
a set of δr , εr , but in other cases the relationship is more complex, and in such cases we give
the leading-order expression for #n,En+1 in the asymptotic limit ν → 0. We have

αn = T

( �n+1−1∏
r=�n

arp
)( �n+1−1∏

r=�n

[
1 +

δr

arp

])
∼ T

( �n+1−1∏
r=�n

arp
)(

1 +
�n+1−1∑
r=�n

δr

arp

)
(2.8)

since δr = O(ν) � arp = O(1); correction terms to the above approximation are thus O(ν2).
Using (1.12), (1.13), the leading-order term is approximated by αnpλ where α = T aλλpλ and
the first correction term due to the rate perturbations is defined by

#n = αnpλ
�n+1−1∑
r=�n

δr

arp
. (2.9)

Similarly, for the fragmentation rates we have βn+1 = βnpλ + En+1 with β = T bλλpλ and

En+1 = βnpλ
�n+1−1∑
r=�n

εr+1

brp
. (2.10)

2.5. Consistency and accuracy analysis

Having derived coarse-grained rate coefficients which include the leading-order corrections
due to random perturbations from a power law, we now use these rate coefficients to construct
a partition function ϒn for the coarse-grained model from the macroscopic rates αn, βn. This
is determined by

ϒ1 = 1 αnϒn = βn+1ϒn+1 (n � 1) (2.11)

which implies

ϒN =
N−1∏
n=1

αn

βn+1
and logϒN =

N−1∑
n=1

(logαn − logβn+1). (2.12)
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We can then compare this result with the full partition function as a check on the coarse-graining
procedures, with the hope of finding ϒN = QR when R = �N to leading order in ν. For cases
in which a steady-state solution is approached as t → ∞, we compare the steady-state solution
xsss
n calculated from the noisy contracted rates, αn, βn+1, with the steady-state solution of the

full model, csss
r . If, moreover, cr = xn when r = �n then we will have demonstrated that no

crucial information has been lost in the coarse-graining reduction. This test thus amounts to
a consistency check which we shall carry out not just at leading order, but also to first order
in ν (that is in #r,Er+1) for the purposes of accuracy assessment. These checks will enable
us to demonstrate if and when we have successfully bridged the scales from microscopic to
mesoscopic for certain choices of the coarse-graining parameter λ.

2.6. Effect of noise on the late-time kinetics of the contracted system

Having checked that the equilibrium and steady-state solutions of the microscopic description
of the system have been faithfully reproduced in the coarse-grained system, we perform one
final calculation to check that the late-time asymptotic form of the kinetics is also correctly
replicated. In general the contracted system of equations can be written using (1.10) and (2.8)–
(2.10) as

ẋn = [
α(n−1)pλ + #n−1

]
xn−1 − [

β(n−1)pλ + En

]
xn − [

αnpλ + #n

]
xn

+
[
βnpλ + En+1

]
xn+1. (2.13)

In the following section we examine the equilibrium and steady-state solutions of this model,
as well as the manner in which the time-dependent solutions convergence to these solutions.
We then compare this behaviour with the properties of the microscopic system prior to coarse-
graining. We now analyse in greater detail the nine cases summarized at the end of section 1.4;
that is those corresponding to p = 0, p > 0 and p < 0 in the three cases θ = 0, 1,∞.
The conditions θ = 0, 1,∞ correspond to (α, β) equalling (0, 1), (1, 1), (1, 0) respectively.
The fourth case (α, β) = (0, 0) yields a special limiting system which will be described in
section 3.10.

3. The nine generic classes of asymptotic behaviour

Nine distinct generic classes of asymptotic behaviour were picked out by the RG analysis in
section 1.4 (see also [11, 19]). For each class or case we shall perform the five calculations
described above. We start with the effect of the perturbations on the partition function, and
hence the equilibrium solution. In cases where a steady state is approached rather than
the equilibrium we also calculate the modified form of the steady-state solution. We then
calculate the effect on the kinetics of approach to steady state or equilibrium. Following
these two calculations we turn to the contracted description of the system. The latter three
calculations combine the problems of dealing with the noise and the coarse-grained system.
We analyse the contracted Becker–Döring system derived from the full microscopic model
with rate coefficients given by a combination of a power law with random perturbations, and
investigate whether coarse-graining averages noise out of the system or exaggerates its effect.
In so doing, we discover how perturbations to the microscopic rates manifest themselves in
the rates of the contracted system. We then establish consistency by showing that the partition
function calculated from the coarse-grained rates is the same, to leading order, as the partition
function from the microscopic system sampled over the coarse mesh. Finally, we analyse the
effect of the perturbations in the mesoscopic model on the large-time kinetics of the coarse-
grained system.
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3.1. Case I

This case corresponds to a fragmentation-dominated system where the fragmentation rate is
independent of cluster size, that is the rate at which large clusters shed monomers is the same
as that for small clusters. Such situations may arise in certain types of polymer degradation,
if the breakdown of chains takes place through end-monomer fission processes.

In the non-perturbed version of this case, ar = 0 for all r , so the partition function is
identically zero. Introducing noise to the aggregation coefficient makes the partition function
nonzero

Qr =
r−1∏
k=1

δk

1 + εk+1
∼

( r−1∏
k=1

δk

)(
1 −

r−1∑
k=1

εk+1 + O(ν2)

)
. (3.1)

Thus the partition function Qr depends primarily on the perturbations δr ; the perturbations εr
only enter at higher order. Since E[δr ] = ν � 1, Qr decays rapidly to zero with increasing
r , according to Qr = O(νr−1), thus Qr+1 � Qr for all r . Case I may hence correspond
to a situation in which finite-length polymers or oligomers break down via stepwise fission
processes.

In the noisy case, there is a nonzero partition function Qr to which the system converges.
To determine the manner of this convergence we transform from cr(t) to new coordinates,
cr = Qrψr(t) so that at equilibrium ψr ≡ 1. Then ψr(t) satisfies

ψ̇r = ψr−1 − ψr + δr(ψr+1 − ψr) − εr(ψr − ψr−1) (3.2)

for large aggregation numbers (r) and at large times (t), the continuum limit is valid and this
equation goes over into the following partial differential equation:

∂ψ

∂t
= 1

2

∂2ψ

∂r2
(1 + δr + εr) − ∂ψ

∂r
(1 + εr − δr) . (3.3)

The solutions of this type of equation typically approach equilibrium via a diffusive wave,
whose position we denote by r = s(t). We transform from r to the new position variable
z = r − s(t) relative to the wavefront. The leading-order terms are then those involving ∂ψ

∂z
,

formally yielding the equation ṡ = 1 +εs − δs for the position of the wave. The expected value
of the first perturbation (due to δr ) is zero, since E[εr ] = 0 for all r , but that of the second (due
to εr ) is positive, that is E[δr ] = ν for all r . Thus we have E[ṡ] = 1 − ν, and the presence
of perturbations slows the wave. This is not, however, a leading-order effect since small noise
makes only a small difference to the system’s approach to equilibrium. Higher-order terms
from equation (3.3) lead to a description of the shape of the wavefront. If we start the system
from a state of compact support (that is cr(0) = 0 for r � R for some R < ∞), then the
large-time and large aggregation number asymptotic solution is given by

cr(t) = 1

2
Qr erfc

(
r − (1−ν)t√

2 (1+ν) t

)
(3.4)

where Qr is the partition function defined by equation (3.1). Thus, as well as travelling slightly
more slowly than in the noiseless case, the wave is widened slightly, being spread out over a
larger number of cluster sizes. These effects would be hard to measure experimentally since
the typical concentration of large cluster sizes would be extremely small. Both these effects
are due to the differing expected values of the perturbations to the forward and backward rate
constants (namely that E[εr ] = 0 whilst E[δr ] = ν).

Moving now to the coarse-grained, mesoscopic description of the problem, we find ar = 0,
br = 1 implies αn = #n and βn+1 = 1 + En+1 where

#n =
�n+1−1∏
r=�n

δr En+1 =
�n+1−1∑
r=�n

εr+1 + O(ν2). (3.5)
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Thus, following an application of the coarse-graining contraction procedure, to O(1) the rates
are αn = 0 and βn+1 = 1 with small perturbations to the rates, #r = O(νλ) and Er+1 = O(ν).
Thus the perturbations to the aggregation rates are much smaller than those to the fragmentation
rates, making the system appear more fragmentation dominated than the uncontracted version.
However, this effect is due to the contracted model only representing some cluster sizes: growth
from xr to xr+1 requires the addition of λ monomers and hence happens at a rate of O(νλ) rather
than the O(ν) rate for growth from cr to cr+1 in the full model. Thus the contracted description
is dominated by fragmentation to the correct extent. Since the perturbations in the full model
are independent, and distributed with E[δr ] = ν, E[εr ] = 0, V[δr ] = O(ν2), V[εr ] = O(ν2),
in the contracted description we have E[#n] = νλ, E[En] = 0, V[#n] = O(ν2λ), and
V[En] = O(ν2).

We now use the contracted rates given by αn = #n and βn+1 = 1 + En+1 to calculate a
partition function for the coarse-grained system. Using (2.12) and (3.5), we find

ϒN =
( N−1∏

n=1

#n

)(
1 −

N−1∑
n=1

En+1 + O(ν2)

)
=

( �N−1∏
r=1

δr

)(
1 −

�N−1∑
r=1

εr+1 + O(ν2)

)
. (3.6)

Thus the first two terms of the equilibrium solution of the reduced model agree exactly with
that of QR with R = �N in the full model (3.1).

In this case we know that the system will tend to the equilibrium solution given by xn = ϒn

as in (3.6), which closely approximates Qr (3.6) with r = �n. To find the way in which the
solution is approached, we use a similar method to that successfully applied to the microscopic
description above, namely that of transforming to new dependent variables ψn(t) given by
xn(t) = ϒnψn(t). Then to first order in ν we have

ψ̇n = ψn−1 − ψn − En(ψn − ψn−1) (3.7)

since in this case #n = O(νλ) and En = O(ν). For large times and large n-values the
continuum approximation

∂ψ

∂t
= 1

2
(1 + En)

∂2ψ

∂n2
− (1 + En)

∂ψ

∂n
(3.8)

is formally valid. Since E[En] = 0, the diffusive wave travels at unit expected speed and
suffers no O(ν) correction term. Thus if the system is initiated from xn(0) = 0 for n � 2,
the equilibrium is reached is via a diffusive wave moving from n = 1 to large n leaving the
new equilibrium solution behind it as described by xn(t) ∼ 1

2ϒnerfc((n−t)/
√

2t). The noise
thus has no effect at leading order, or at O(ν), although higher-order terms will influence the
evolution of the system. Thus, in this case, coarse-graining has reduced the effect of the noise,
since in the non-coarse-grained case, the kinetics are affected by O(ν) terms, decelerating and
widening the wavefront as described by equation (3.4).

3.2. Case II

In this case the aggregation and fragmentation rates are both relevant and both size independent.
This situation can be expected to arise in a wide variety of nucleation and growth problems:
for example, it is likely to pertain for cluster formation at saturation or low supersaturation
levels during crystal growth.

In this case introducing perturbations δr , εr to the rates ar = arp, br+1 = brp as in (2.1)
modifies the partition function from Qr = 1 for all r to

Qr ∼ 1 +
r−1∑
k=1

(δk − εk+1) + O(ν2). (3.9)
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Small-amplitude noise in the coefficients thus does not affect the leading-order behaviour of
the system, at small values of r . To examine the large-r behaviour, we use the central limit
theorem. For simplicity we assume that each of the random variables δk, εk is distributed
uniformly on the interval [−ν, ν], thus each has an expected value of zero and variance of
σ 2 = 1

3ν
2. The difference δk − εk+1 thus has mean of zero and variance of 2

3ν
2; and the above

sum (equivalent to Qr − 1) has mean zero and variance 2
3 (r − 1)ν2. At large values of r , the

central limit theorem implies the sum can be approximated by a normally distributed random
variable with zero mean and variance σ 2 = 2

3 rν
2. Thus perturbations have a cumulative effect

and may become significant when r = O(ν−2); at this order of magnitude, the approximation
in equation (3.9) ceases to be valid, since neglected higher-order terms then become significant.

For case II the kinetic equations are

ċr = (1 + δr−1)cr−1 − (1 + εr)cr − (1 + δr)cr + (1 + εr+1)cr+1 (3.10)

where δr , εr can be positive or negative, and are O(ν) with E[δr ] = E[εr ] = 0. Formally, for
large times and large aggregation numbers, this leads to the continuum equation

∂ψ

∂t
=

(
1 +

1

2
(δr + εr)

)
∂2ψ

∂r2
+ (δr − εr)

∂ψ

∂r
(3.11)

for ψ(r, t) = cr(t)/Qr . Since E[δr − εr ] = 0, and E[(δr − εr)
2] ∼ ν2 � 1, diffusion

dominates the advection terms, and there is no overall driving force on the diffusive wave.
Effectively, it is pinned at r = 1 and equilibrium is reached by purely diffusive mechanisms.
If we use compact initial conditions (that is cr(0) = 0 for all r � R for some R < ∞) then
the large-time asymptotic solution is

cr(t) = Qrerfc

(
r

2
√
t

)
. (3.12)

Note that E[δr ] = 0 = E[εr ] implies that the width scale is unchanged by the perturbations,
in contrast with case I, where the wave was widened due to E[δr ] > 0.

Following the coarse-graining contraction, the reaction rates are given by αn = 1 + #n

and βn+1 = 1 + En+1, where

#n =
�n+1−1∑
r=�n

δr + O(ν2) En+1 =
�n+1−1∑
r=�n

εr+1 + O(ν2). (3.13)

Thus a system in which aggregation and fragmentation are balanced is mapped to a similar
system following a coarse-grained reduction. Since E[δr ] = 0 = E[εr ] and V[δr ],V[εr ] =
O(ν2) we have E[#n] = 0 = E[En] and V[#n],V[En] = O(ν). The central limit theorem
implies that the variances of the noise will increase linearly with λ. Since both δk, εk have
variance proportional to ν2, then #r,Er have variance proportional to λν2. So in order for the
noise to remain a small correction term, one has to ensure that λ � ν−2; for small perturbations
(ν � 1) this does not constitute a significant restriction.

Using (2.12) and (3.13), we find the partition function ϒn for the coarse-grained system
is given by

ϒN = 1 +
N−1∑
n=1

(#n − En+1) + O(ν2) = 1 +
�N−1∑
r=1

(δr − εr+1) + O(ν2). (3.14)

Thus the first two terms of the equilibrium solution of the reduced model agree exactly with
that of QR with R = �N in the full model (3.9). Thus, in the presence of noise, the contracted
system tends to an equilibrium solution of the same form, to first order, as the full system.
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The kinetic equations determining the approach to equilibrium are

ẋn = (1 + #n−1)xn−1 − (1 + En)xn − (1 + #n)xn + (1 + En+1)xn+1 (3.15)

where #n,En are O(ν) with E[#n] = E[En] = 0. The system tends to the equilibrium
solution xn = ϒn by a purely diffusive mechanism as described formally by the continuum
limit equation

∂ψ

∂t
=

(
1 +

#n + En

2

)
∂2ψ

∂n2
+ (#n − En)

∂ψ

∂n
(3.16)

for ψ(n, t) = xn(t)/ϒn, so that ψ → 1 as t → ∞. Since the expected values of perturbations
#n and En are both zero, there are no O(ν) correction terms to ψ(n, t) in the large-time limit,
and we have the solution xn(t) = ϒnerfc(n/2

√
t). Thus to O(ν) the large-time kinetics of the

system are almost identical to the uncontracted model. Using r = �n, cr = xn and Qr = ϒn,
the above formula for xn(t) implies cr = Qrerfc(r/2λ

√
t) whereas analysis of the full model

gave (3.12); thus the only difference between full and contracted models is in the timescale.

3.3. Case III

This case models situations which favour the formation of clusters since the system is dominated
by aggregation; however, the rate of aggregation is size independent so that nucleation and
cluster growth processes are balanced. One physicochemical scenario that this case may
describe arises in certain surfactant self-assembly processes, in which amphiphile monomers
attach to a growing assembly (for example, wormlike micelles, vesicles, and so on).

In the pure aggregation case with no noise the partition function is not defined since all
the fragmentation coefficients br vanish. The presence of noise makes it possible to define the
partition function

Qr =
( r−1∏

k=1

1

εk+1

)(
1 +

r−1∑
k=1

δk + O(ν2)

)
. (3.17)

This is strongly dependent on the perturbations εk , implying rapid growth in Qr with r ,
specifically Qr = O(ν−(r−1)). However, the system does not approach the equilibrium state
cr = Qr , rather it tends to a steady-state configuration. In the unperturbed problem this state
is cr = 1 for all r , which has the steady-state flux J = 1; when noise is added to the rate
coefficients this state is modified to J = 1 + (δ1−ε2) + O(ν2) by the calculation (1.6). Since
the expected values of δk, εk satisfy E[δk] = 0 and E[εk] = ν > 0, the expected value of
the steady-state flux is reduced by the presence of small-amplitude noise from J = 1 in the
noise-free system to E[J ] = 1 − ν. The concentrations asymptote to the modified steady state

csss
r = 1 + (δ1−ε2 +εr+1−δr) + O(ν2). (3.18)

The presence of O(ν) noise in the reaction rates alters the steady-state solution by an amount
of O(ν). Note that the noise in the two rate constants a1, b2 affects the limiting concentrations
of clusters of all sizes.

The kinetics of this case are governed by the approach to the steady-state solution (not the
equilibrium solution). Since the perturbations to the fragmentation rates (εk) are all positive
and the perturbations to the coagulation rates can be positive or negative, we have E[δk] = 0 and
E[εk] = ν. We replace the differential–difference system by a partial differential equation by
taking the continuum limit and then seeking a diffusive wave solution of this partial differential
equation. First, we transform variables by cr(t) = csss

r ψr(t) so that ψr(t) → 1 as t → ∞
according to

ψ̇r = (1 + δr)(ψr+1 − ψr) + εr(ψr−1 − ψr) +
J

csss
r

(ψr−1 − ψr+1) (3.19)
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which formally goes over to the continuum limit

∂ψ

∂t
= 1

2
(1 + δr + εr)

∂2ψ

∂r2
− (1 + δr + εr − 2εr+1)

∂ψ

∂r
. (3.20)

We define s(t) to be the position of the wave and transform from r to an as yet unknown
coordinate which moves with the diffusive wave by r = s(t) + z. The wavefront is then
determined by ṡ = 1 − ν, an equation which is derived from the leading-order terms of (3.20)
by taking expectation values. The speed of propagation is reduced slightly by the noisy
coefficients, although this is a first-order effect, only being present in the O(ν) terms. The
large-time and large-size asymptotic solution is

cr(t) ∼ 1

2
csss
r erfc

(
r − (1−ν)t√

2 (1+ν) t

)
(3.21)

showing that the noise also broadens the diffusive wave in aggregation space as in case I. The
erfc shape is determined by the higher-order terms of (3.20).

The domination of aggregation over fragmentation in the contracted form of case III is
not altered by the presence of small-amplitude noise

#n =
�n+1−1∑
r=�n

δr + O(ν2) En+1 =
�n+1−1∏
r=�n

εr+1. (3.22)

In this case αn = 1+#n and the noise in the aggregation term, #n, is O(ν) whereas the noise in
the fragmentation term, βn+1 = En+1, is much smaller, being of magnitude O(νλ). Superficially
this gives the impression of the contracted system being more strongly aggregation-dominated
than the full system; however, this accentuated dominance is correct for similar reasons to
those expounded for case I. Since E[δr ] = 0 and V[δr ] = O(ν2), we have E[#n] = 0
and V[#n] = O(ν2); also E[εr ] = ν and V[εr ] = O(ν2) implies E[En+1] = νλ and
V[En+1] = O(ν2λ). Equations (2.12) and (3.22) imply

ϒN ∼
( N−1∏

n=1

1

En+1

)(
1 +

N−1∑
n=1

#n + O(ν2)

)
=

( �N−1∏
r=1

1

εr+1

)(
1 +

�N−1∑
r=1

δr + O(ν2)

)
(3.23)

so the contraction procedure does not lose information from the first two terms of the partition
function—to see this, compare ϒN in the above with QR in (3.17) with R = �N . However, in
this case the partition function does not play such an important role as in cases I and II where it
determines the large-time asymptotic solution which is approached; here, it is the steady-state
solution which determines the large-time asymptotics. Since Er = O(νλ), whilst #r = O(ν),
perturbations to the forward coefficients influence the first correction term whereas those to
the backward rates do not. The steady-state solution is thus modified to

xsss
n = 1 + #1 − #r + O(ν2) = 1 +

λ∑
k=1

(δk − δ(n−1)λ+k) + O(ν2) (3.24)

which has constant flux L = 1 + #1 + O(ν2). The leading-order terms (xn = 1, L = 1)
agree with the full model and with the model without noisy coefficients; however, the first
correction term is not in agreement with the full solution of the noisy model. The contracted
model predicts a steady-state flux of L ∼ 1 +

∑λ
k=1 δk +O(ν2), whereas the full model has flux

J ∼ 1 + δ1 − ε2 + O(ν2), so agreement is limited to the leading-order terms (J = L = 1) only,
with the first-order correction terms differing, being O(ν). In this case microscopic detail in
the first correction is involved in determining the steady-state flux, but the information is lost
in the coarse-graining contraction, so the procedure only gives the correct result to leading
order in ν.
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To determine the kinetics of approach to steady state in the reduced model we transform
from xn(t) to ψn(t) by xn(t) = xsss

n ψn(t) to gain

ψ̇n = (1 + #n)(ψn+1 − ψn) + En(ψn−1 − ψn) +
L

xsss
n

(ψn−1 − ψn+1). (3.25)

Since #n = O(ν) and En = O(νλ), the two-term continuum expansion of (3.25) correct to
O(ν) is

∂ψ

∂t
= 1

2
(1 + #n)

∂2ψ

∂n2
− (1 + #n)

∂ψ

∂n
. (3.26)

Thus, including the O(ν) terms, the diffusive wave has an expected speed of unity since
E[#n] = 0. This differs slightly from the result for the full model presented in (3.21), where
the nonzero O(ν) perturbations to the fragmentation rates caused the wave to be slowed. After
taking expectations, (3.26) is solved by ψ = 1

2 erfc((n − t)/
√

2t) which yields the large-time
solution

xn(t) ∼ 1

2
(1 + #1 − #n) erfc

(
n − t√

2t

)
. (3.27)

Thus, coarse-graining has altered the O(ν) correction terms in the kinetics of the approach
to the steady state, as well as the O(ν) corrections to the steady state itself. However, the
leading-order behaviour is faithfully reproduced.

3.4. Case IV

This generic class of behaviour describes systems dominated by fragmentation, in which larger
clusters break up at a much faster rate than smaller ones.

When noise is absent, the partition function is identically zero (for r � 2); however, the
presence of noise alters the partition function to

Qr ∼ 1

[(r − 1)!]p

( r−1∏
k=1

δk

)(
1 −

r−1∑
k=1

εk+1

kp

)
. (3.28)

Thus, Qr rapidly decays with increasing r since as r → ∞, Qr = O(νr−1) and p > 0.
The presence of perturbations to the rate coefficients provides a nonzero equilibrium solution
cr = Qr given by equation (3.28) which is approached, as we shall now show, via a diffusive
wave. Transforming to new variables ψr(t) = cr(t)/Qr , we find

ψ̇r = δr(ψr+1 − ψr) +
[
(r−1)p + εr

]
(ψr−1 − ψr) (3.29)

where δr > 0 with E[δr ] = ν for all r , and E[εr ] = 0 for all r , with εr taking both positive
and negative values. In the large-r and large-time limit, ψr becomes smooth in r so it is valid
to take the continuum limit which formally yields

∂ψ

∂t
= 1

2

[
(r−1)p + δr + εr

] ∂2ψ

∂r2
− [

(r−1)p + εr − δr
] ∂ψ

∂r
. (3.30)

This type of equation has a diffusive wave solution; we denote its position by s(t) and transform
to a coordinate which moves with the wave, via r = s(t) + z. At leading order, this formally
yields the equation ṡ = (s−1)p + εs − δs . Since E[εk] = 0 and E[δk] = ν > 0, there is an
O(ν) term in the equation for the expected value of s(t), namely

ṡ = (s−1)p − ν. (3.31)

Thus the noise has a slowing influence on the wave, but since s → ∞ as t → ∞, the
leading-order term is ṡ0 = s

p

0 , and we have

s0(t) = [(1 − p)(t − t0)]
1/(1−p). (3.32)



8712 J A D Wattis and P V Coveney

An O(ν) correction term can be calculated by putting s(t) = s0(t)+νs1(t) into equation (3.31);
one finds s0(t) is determined by (3.32) and s1(t) by ṡ1 = −1 + ps

p−1
0 s1, which yields

s1 = −(1 − p)(t − t0)

(1 − 2p)
+ K(t − t0)

p/(1−p) (3.33)

for some constant K . Thus, for p < 1, the wave experiences a deceleration which reduces
the speed by a constant amount but which is insufficient to stop the wave since the growth in
equation (3.32) has the faster growth rate in the limit t → ∞. A higher-order effect is that noise
broadens the wave very slightly, since noise in (3.30) has the effect of increasing the diffusion
coefficient. The effect of this, however, is minimal since the diffusion constant which the wave
experiences grows without bound in the large-time limit. In cases where p < 1

2 , higher-order
terms from equation (3.30) yield the shape of the front as ψ = 1

2 erfc(z/
√
(2s(t)+ 4νt)) so that

the large-time asymptotic solution (including the first correction term due to ν) is given by

cr(t) ∼ 1

2
Qrerfc

(
r − s(t)√
2s(t) + 4νt

)
(3.34)

where s(t) = s0(t) + νs1(t) is given by equations (3.32) and (3.33). As t → +∞, the effects
of perturbations to the rate coefficients decrease in significance, both in the position and in the
shape of the wavefront.

The rates in the contracted model are given by αn = #n and βn+1 = npλ +En+1 where the
perturbations are determined by

#n = λ−pλ
�n+1−1∏
r=�n

δr = O(νλ) En+1 = npλ
�n+1−1∑
r=�n

εr+1

rp
+ O(ν2) (3.35)

where in the latter, we have again made the approximation (1.13) valid for large r . Note that,
as in case I, αr = O(νλ) whereas βr+1 = rpλ + O(ν), suggesting that while the contracted
model equations have the same structure as the full ones, they are more heavily fragmentation
dominated, due to the rate at which a clusterxn+1 = c�n+λ grows from the clusterxn = c�n

being
much less than for cr+1 growing from cr . If we assume that the perturbations are independent
and randomly distributed with

E[δr ] = ν E[εr+1] = 0 V[δr ] = Vδν
2

V[εr+1] = Vεν
2 (3.36)

then the perturbations to the contracted rates satisfy

E[#n] = λ−pλνλ
E[En+1] = 0

V[#n] = λ−2pλ [(Vδ+1)λ−1]ν2λ
V[En+1] ≈ Vελ

1−2pn2p(λ−1)ν2 (3.37)

where the last formula includes a simplifying approximation valid for large r and large
λ (namely replacing

∑�n+1−1
r=�n

rz with
∫ �n+1−1
r=�n

rz dr , to yield λ1−zr−z). The formulae
in (3.37) show that the contraction procedure makes the amplitude of the perturbations to
the fragmentation rate dependent on the aggregation number, with larger sizes having a greater
variance in the fragmentation rates. However, at larger sizes the standard deviation of the noise
grows with O(np(λ−1)), thus the noise never becomes as large as the deterministic component
of the rate (βn = O(npλ)).

We now use this knowledge of the rates in the contracted system including the leading-
order perturbations to construct a partition function for the contracted system ϒn and, for
consistency, verify that ϒn = Qr when n = �r . Using (2.12) and (3.35), we find

logϒN ∼ −pλN(logN − 1) +
N−1∑
n=1

log#n −
N−1∑
n=1

En+1

npλ

∼ −pλN(log(λN) − 1) +
�N−1∑
r=1

log δr −
�N−1∑
r=1

εr+1

rp
(3.38)
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where a similar approximation to that of (1.13) has been made. This result should be compared
with QR for R = �N from (3.28), which yields

logQR ∼ −pR(logR − 1) +
R−1∑
r=1

log δr −
R−1∑
r=1

εr+1

rp
. (3.39)

Thus there are differences between Q�N
and ϒN , but at large N these scale with logN , which

is of lower order of magnitude than the first two terms of ϒN or Q�N
. For large N , the

leading-order and first correction terms in the log of the partition function grow with N logN

and N respectively, so both are reproduced correctly in the contracted description, as are the
perturbations δk, εk+1 as can be seen by comparing (3.38) with (3.39); it is only high-order
correction terms which differ. An alternative comparison can be made between

E[ϒN ] = ((N−1)!)pλ

λ−pλ(N−1)νλ(N−1)
and E[QR] = ((R−1)!)p

νR−1
(3.40)

again showing that for large N and R = �N the leading-order terms agree, since Stirling’s
formula leads to the dominant terms in both expressions being (λN)pλNe−pλN/νλN .

In the present case, the system tends to the modified equilibrium solution xn = ϒn given
by (3.38). The transformation ψn(t) = xn(t)/ϒn enables us to find the large-time asymptotics;
when applied to the equation

ẋn = #n−1xn−1 − #nxn − [
(n−1)pλ + En

]
xn +

[
npλ + En+1

]
xn+1 (3.41)

it yields

ψ̇n = #n(ψn+1 − ψn) +
[
(n−1)pλ + En

]
(ψn−1 − ψn). (3.42)

Since #n = O(νλ) whilst En = O(ν) we keep only those terms involving perturbations to the
fragmentation rate (En); thus on formally taking the continuum limit, we find

∂ψ

∂t
= 1

2
[(n−1)pλ + En]

∂2ψ

∂n2
− [(n − 1)pλ + En]

∂ψ

∂n
. (3.43)

The substitution from independent variablen to z = n−s(t) yields the expression ṡ = (s−1)pλ

since E[En] = 0; hence the noise has no O(ν) effect on the expected speed of the wave in the
large-time limit unlike the full model (see equation (3.31)). Thus, as s → ∞, we have ṡ = spλ

and so s(t) = [(1−pλ)(t−t0)]1/(1−pλ) as in the full model with noiseless rate coefficients. As in
case I, the coarse-graining process has reduced the effect of the perturbations. These solutions
are only valid for pλ < 1; when pλ > 1 the system instantly gels as noted by Brilliantov
and Krapivsky [4], and the large-time asymptotics differ significantly. However, this case is
less relevant physically, since the aggregation rate cannot normally grow faster than the cluster
size, and usually grows much more slowly, giving rise to exponents strictly less than unity (i.e.
p < 1).

3.5. Case V

This is perhaps the most interesting of all the nine classes of generic behaviour. Both
aggregation and fragmentation are present and finely balanced; both occur faster at larger
aggregation numbers than smaller ones. As expected in general crystal growth and dissolution
processes, there is relatively slow nucleation of critical nuclei from the free ‘monomer’ phase
and faster growth/dissolution of supercritical clusters.

In the case with no noise, aggregation and fragmentation are perfectly balanced, implying
the same value for the partition function Qr = 1 for all r . The presence of perturbations to
the rates alters this, to

Qr = 1 +
r−1∑
k=1

(
δk − εk+1

kp

)
+ O(ν2). (3.44)
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Thus for ν � 1 the leading-order behaviour (Qr = 1) is unaltered, but suffers an O(ν)

correction term. However, for p < 1 a result similar to that derived in case II holds, where
the effect of the perturbations accumulates, so that at large r the noise may become a leading-
order effect. For case V we assume each δk, εk has a mean of zero, a variance of ν2 and all
are independent random variables. Thus at large r , Qr has an expected value of unity with a
variance of ν2r1−p/(1 − p). Thus when r = O(ν−2/(1−p)), the variance is O(1) and so the
perturbations influence the leading-order term in the asymptotic expression for Qr . Note that
if p > 1 then the variance of Qr approaches ν2ζ(p) (where ζ(z) is the Riemann zeta function
which arises in the solution of the noiseless time evolution for case V; see [11,19]), and so the
accumulation does not become a leading-order effect.

In the case p > 1, however, the system does not evolve towards the equilibrium solution,
but instead is attracted to a steady-state solution with a more rapid decay in the limit r → ∞
which we now examine in more detail. Perturbing the rate coefficients modifies this state from
one of constant flux with J = 1/ζ(p) to J = 1/ζ(p) + J1, where

J1 = 1

ζ(p)2

∞∑
k=1

(
δk

kp

∞∑
n=k

1

np
− εk+1

kp

∞∑
n=k+1

1

np

)
. (3.45)

This gives the steady-state concentrations

cr = 1

ζ(p)

∞∑
k=r

1

kp
+

r−1∑
k=1

(
δk

ζ(p)kp

∞∑
i=k

1

ip
− εk+1

ζ(p)kp

∞∑
i=k+1

1

ip
− J1

kp

)
. (3.46)

Unlike the steady states in cases III and VI, the perturbations δ1, ε2 do not play a special role
in this solution; rather all perturbations influence the steady-state flux and concentrations.

Let us now analyse the approach to equilibrium for p < 1. The equilibrium solution is
identical to the partition function Qr since c1 = 1. We transform to new independent variables
ψr(t) = cr(t)/Qr , with Qr modified by the presence of noise, as in (3.44); for large r , we
formally obtain the continuum approximation

1

rp

∂ψ

∂t
=

(
1 +

δr + εr

2rp

)
∂2ψ

∂r2
+

(
p

r
+
δr − εr

rp

)
∂ψ

∂r
. (3.47)

This describes physical behaviour that approaches equilibrium neither by a diffusive wave
nor by a simple diffusive process as case II did; instead there is a more complicated similarity
solution. Including O(ν) correction terms, taking the expectation of this leads to ψt = (rpψr)r
so the similarity solution

ψ(r, t) =
∫ ∞
r/t1/(2−p) u

−p exp(−u2−p/(2 − p)2) du∫ ∞
0 u−p exp(−u2−p/(2 − p)2) du

(3.48)

provides the correct asymptotic approximation in the limit ν � 1; the correction terms being
much smaller than O(ν) (that is o(ν)), in contrast with cases IV and VI where the correction
terms are O(ν).

When p > 1 a steady state with nonzero flux is approached. We convert to new variables
cr(t) = csss

r ψr(t). For 1 < p < 2 the continuum approximation valid at large r is formally

1

rp

∂ψ

∂t
=

(
1 +

δr + εr

2rp

)
∂2ψ

∂r2
+

(
2 − p

r
+
δr − εr

rp

)
∂ψ

∂r
(3.49)

which, when we take the expected value of each term, reduces to

∂ψ

∂t
= rp

∂2ψ

∂r2
+ (2 − p)rp−1 ∂ψ

∂r
(3.50)
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the correction terms due to δr and εr again being much smaller than O(ν), that is of magnitude
o(ν). This equation has the solution

ψ =
∫ ∞
r/t1/(2−p) u

p−2 exp(−u2−p/(2 − p)2) du∫ ∞
0 up−2 exp(−u2−p/(2 − p)2) du

. (3.51)

Because p > 1, the perturbations are uniformly small in r in both advection and diffusion
terms. Thus this is a uniformly valid leading-order solution. For p � 2, the similarity solution
of equation (3.51) is not well-defined, and so does not determine convergence to the steady
state.

In the contracted system of equations, the rates are given by αn = npλ + #n and
βn+1 = npλ + En+1, where, again using (1.13), we find

#n = npλ
�n+1−1∑
r=�n

δk

kp
En+1 = npλ

�n+1−1∑
r=�n

εk+1

kp
. (3.52)

In contrast to cases IV and VI, perturbations to the forward and backward rates in the contracted
equations have the same order of magnitude. If the noise in the full model is assumed to be
randomly distributed according to

E[δr ] = 0 E[εr+1] = 0 V[δr ] = Vδν
2

V[εr+1] = Vεν
2 (3.53)

then in the contracted model we have

E[#n] = 0 E[En+1] = 0 V[#n] ≈ Vδλ
1−2pn2p(λ−1)ν2

V[En+1] ≈ Vελ
1−2pn2p(λ−1)ν2.

(3.54)

As in equation (3.37), the approximations replace
∑�n+1−1

r=�n
rp by

∫ �n+1−1
r=�n

rp dr . From (3.54)
we see that the amplitude of the noise is size dependent in the contracted description but, even at
large aggregation numbers, it never rivals the deterministic component of the rate coefficients.
The expected values and the orders of magnitude (in ν) of the variance are correctly maintained
in the reduced model.

Following a similar method to that of case IV, we insert the contracted rates (3.52)
into (2.12) to find the contracted partition function

ϒN = 1 +
N−1∑
n=1

#n − En+1

npλ
+ O(ν2) = 1 +

�N−1∑
r=1

δr − εr+1

rp
+ O(ν2). (3.55)

In this case the partition function constructed from the reduced rate coefficients matches the
first two terms of the full (microscopic) partition function QR with R = �N as in (3.44). This
function also provides the large-time asymptotic approximation to the equilibrium solution for
pλ � 1.

In cases where p > 1/λ, a steady state is approached instead of the equilibrium. This
differs from the full model, where the transition from equilibrium to steady state occurs at
p = 1. Values of p satisfying 1/λ < p < 1 will approach a steady state in the contracted
description but the equilibrium solution in the full model. Thus when 0 < p < 1, in order to
capture the correct qualitative behaviour, one must ensure that λ < 1/p.

The steady-state solution for p > 1/λ has flux L = 1/ζ(pλ) + L1 where

L1 = 1

ζ(pλ)2

∞∑
r=1

(
#r

rpλ

∞∑
k=r

1

kpλ
− Er+1

rpλ

∞∑
k=r+1

1

kpλ

)
(3.56)

the steady state being given by

xsss
n = 1

ζ(pλ)

∞∑
k=n

1

kpλ
+

1

ζ(pλ)

∞∑
r=n

(
L1ζ(pλ)

rpλ
+
Er+1

rpλ

∞∑
k=r+1

1

kpλ
− #r

rpλ

∞∑
k=r

1

kpλ

)
. (3.57)
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This clearly has a similar form to (3.46); however, whilst (3.57) displays the same qualitative
behaviour as (3.46), there are quantitative differences. The leading-order part of (3.46) at large
r decays according to cr ∼ 1/(p−1)ζ(p)rp−1, implying that for r = �n the quantity cr
asymptotes to 1/(p−1)ζ(p)λp−1np−1 whilst xn ∼ 1/(pλ−1)ζ(pλ)npλ−1; while both decay
algebraically, the coarse-graining procedure has altered the exponent of the decay.

Let us turn now to the kinetics of the system’s approach to equilibrium or a steady state.
Since both #n and En are O(ν) the kinetics of the contracted system is very similar to that
of the full system. For p < 1/λ the system approaches the equilibrium solution xn = ϒn,
where to O(ν), ϒn is identical to Qr with r = �n—compare equations (3.44) and (3.55).
The manner of approach is remarkably similar to (3.47), namely for ψ(n, t) = xn(t)/ϒn we
formally have

1

npλ

∂ψ

∂t
=

(
1 +

#n + En

2npλ

)
∂2ψ

∂n2
+

(
pλ

n
+
#n − En

npλ

)
∂ψ

∂n
(3.58)

which, on taking expectations, leads to the solution

ψ(n, t) =
∫ ∞
n/t1/(2−pλ) u

−pλ exp(−u−pλ/(pλ)2) du∫ ∞
0 upλ−2 exp(−u−pλ/(pλ)2) du

. (3.59)

When p > 1/λ the system approaches the perturbed steady-state solution xsss
n given

in (3.56), (3.57) according to

1

npλ

∂ψ

∂t
=

(
1 +

#n + En

2npλ

)
∂2ψ

∂n2
+

(
2 − pλ

n
+
#n − En

npλ

)
∂ψ

∂n
(3.60)

where ψ(n, t) = xn(t)/x
sss
n . Equation (3.60) corresponds to the kinetics of the full

model (3.49). As in the full model, there are also O(n−2) corrections to the advection term
which are more significant than the n−pλ terms if p > 2/λ. After taking the expectation of
equation (3.60), the solution

ψ(n, t) =
∫ ∞
n/t1/(2−pλ) u

pλ−2 exp(−u2−pλ/(2 − pλ)2) du∫ ∞
0 upλ−2 exp(−u2−pλ/(2 − pλ)2) du

(3.61)

can be found.

3.6. Case VI

In this generic case there is virtually no fragmentation; the system is dominated by aggregation
which occurs more rapidly for large cluster sizes. This scenario is typical of nucleation and
growth processes in heavily supersaturated solutions, in which critical nuclei form relatively
slowly, but then grow in size very rapidly.

As in case III, the partition function is not defined when noise is absent since all the
fragmentation rates are then zero; when the fragmentation rates are perturbed by noise the
partition function Qr can be defined but is sensitive to the amplitude of εk

Qr ∼ [(r − 1)!]p
( r−1∏

k=1

1

εk+1

)(
1 +

r−1∑
k=1

δk

kp

)
(3.62)

thus Qr = O(ν−(r−1)). However, in this case the system does not tend to the equilibrium state
cr = Qr ; instead, it tends to a steady state given by constant flux J = 1+(δ1 −2−pε2)+O(ν2),
which implies

csss
r = 1

rp

[
1 +

(
δ1 − 2−pε2 +

εr+1

(r+1)p
− δr

rp

)]
. (3.63)
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Thus, altering ar, br+1 by O(ν) alters the steady state by an O(ν) amount. As one might expect,
the perturbations to rates at larger aggregation numbers are less significant than those to lower
aggregation numbers; also as in case III, the first two perturbations δ1, ε2 influence all other
concentrations at O(ν). Whilst the presence of noise restores the existence of the partition
function, equation (3.63) is the more physically relevant result, in that the partition function
which increases with r will not be directly manifest in a simulation or experiment, whereas
the steady-state concentrations will be. These decrease with increasing r since p > 0.

The manner in which the steady-state solution is approached is found by substituting
cr(t) = csss

r ψr(t) into the determining equations (2.5) which, with b = 0 and a = 1, gives

ψ̇r = εr(ψr−1 − ψr) + (rp + δr)(ψr+1 − ψr) +
J

csss
r

(ψr−1 − ψr+1) (3.64)

where J is the steady-state flux into the system. We have two-term asymptotic expansions for
J and csss

r given in, and just before, (3.63) which enable us to simplify this equation. In the
large-time and large aggregation number limits, we formally take the continuum limit

∂ψ

∂t
= 1

2
(rp + δr + εr)

∂2ψ

∂r2
− (

rp + δr + εr − 2εr+1
) ∂ψ

∂r
. (3.65)

As noted earlier (case IV, equation (3.29)), this equation has a solution in the form of an
advective–diffusive wave; to determine the speed and shape of such a wave we transform to
a frame of reference which moves with the wave by r = s(t) + z where r = s(t) denotes the
position of the wave. The leading-order terms in (3.65) yield

ṡ = sp + δs + εs − 2εs+1 (3.66)

as s → ∞. Since E[δk] = 0 and E[εk] = ν > 0, taking expectations leads to ṡ = sp − ν, so
perturbations have a small slowing effect on the progress of the diffusive wave. We solve (3.66)
by assuming s(t) = s0(t)+νs1(t)with leading-order solution (3.32), as in case IV. As s0 → ∞,
the O(ν) correction term is determined by ṡ1 = −1 + ps

p−1
0 s1 with solution (3.33). A higher-

order effect is that noise broadens the wave very slightly, since noise in (3.65) has the effect of
increasing the diffusion coefficient. The effect of this, however, is minimal since the diffusion
constant which the wave experiences grows without bound in the large-time limit. When
p < 1

2 the shape of the wavefront can be calculated in the same way as for case IV, the solution
for ψ(r, t) being identical, leading to

cr(t) ∼ 1

2
csss
r erfc

(
r − s(t)√
2s(t) + 4νt

)
(3.67)

where s(t) = s0(t) + νs1(t) is given by equations (3.32) and (3.33).
In this case, coarse-graining maps the rates to αn = npλ + #n, βn+1 = En+1 where the

perturbations to the reaction rates #n,En+1 are given by the formulae

#n = npλ
�n+1−1∑
r=�n

δr

rp
+ O(ν2) En+1 = λ−pλ

�n+1−1∏
r=�n

εr+1 = O(νλ). (3.68)

Thus the domination of aggregation over fragmentation persists. We assume that the
perturbations in the full microscopic model satisfy

E[δr ] = 0 E[εr+1] = ν V[δr ] = Vδν
2

V[εr+1] = Vεν
2 (3.69)

whence we find the perturbations in the reduced description satisfy

E[#n] = 0 E[En+1] = λ−pλνλ
V[#n] ≈ Vδλ

1−2pn2p(λ−1)ν2

V[En+1] = λ−2pλ[(Vε+1)λ−1]ν2λ.
(3.70)
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These results are identical to case IV (3.37), but with aggregation and fragmentation rates
reversed.

Following the method used in the earlier cases, we insert (3.68) into (2.12) and find

logϒN ∼ pλN(logN − 1) −
N−1∑
n=1

logEn+1 +
N−1∑
n=1

#k

kpλ

∼ pλN(log(λN) − 1) −
�N−1∑
k=1

log εk+1 +
�N−1∑
k=1

δk

kp
(3.71)

which agrees with a direct expansion of QR (3.62)

logQR ∼ pR(logR − 1) −
R−1∑
k=1

log εk+1 +
R−1∑
k=1

δk

kp
. (3.72)

For large R = �N , the differences between logQR and logϒN grow with logR, or logN ,
whereas the quantities themselves grow at the much faster rates of R logR and N logN . An
alternative comparison can be made between

E[ϒN ] = λ−pλ(N−1)νλ(N−1)

(N − 1)!pλ
and E[QR] = νR−1

(R − 1)!p
(3.73)

for R = �N , where Stirling’s approximation can be used to show that both expressions are
dominated by νλN(e/λN)pλN .

However, in this case the system approaches a steady-state solution. When the leading-
order effects of the perturbations are incorporated, the steady state becomes

xsss
n = 1

npλ

[
1 +

(
#1 − n−pλ#n

)]
(3.74)

which has constant flux L = 1 + #1. This has the correct qualitative behaviour, decaying as
n increases. The leading-order term for large n is xn ∼ n−pλ whilst the microscopic model
predicts cr ∼ r−p so that for maximum accuracy we should have cr ∼ (λn)−pλ when r = �n

which has a qualitatively similar shape (the decay is algebraic), but differs quantitatively
since the exponent differs. The steady-state flux also differs. In the full model it is given by
J = 1 + δ1 − ε2 which depends on noise in the fragmentation rate coefficient (ε2) and has the
expected value E[J ] = 1−ν (since E[δr ] = 0 and E[εr ] = ν for all r). In the contracted model
the flux depends only on the perturbations to the aggregation rates, with E[L] = 1 + o(ν) since
L = 1 + #1 and #1 involves the perturbations to the aggregation rates δr for r = 1, 2, . . . , λ.

To O(ν), the equations which determine the kinetics of the approach to steady state are

ẋn = [
(n−1)pλ + #n−1

]
xn−1 − [

npλ + #n

]
xn (3.75)

since #n = O(ν) and En = O(νλ). The approach can be elucidated by substituting
xn(t) = xsss

n ψn(t) into (3.75), where xsss
n is as given in (3.74), since then

ψ̇n = (npλ + #n)(ψn+1 − ψn) +
L

xsss
n

(ψn−1 − ψn+1). (3.76)

The steady-state solution xsss
n has as an asymptotic approximation (3.74) with steady flux

L = 1 + #1. In the large-n and large-time limit, we take the continuum limit, obtaining the
partial differential equation

∂ψ

∂t
= 1

2
(npλ + #n)

∂2ψ

∂n2
− (npλ + #n)

∂ψ

∂n
. (3.77)

Following earlier analysis, we transform to a moving coordinate frame by n = s(t) + z,
obtaining the equation ṡ = spλ +#s for the position of the wavefront. Since E[#s] = 0, there
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is no effect of the noise on the leading-order progression of the wave through the system, and
we have

s(t) = [(1 − pλ)(t − t0)]
1/(1−pλ) (3.78)

the corrections due to noise being of order O(ν2) and above. For pλ < 1
2 the shape of the wave

is given by ψ = 1
2 erfc(z

√
1 − 2pλ/

√
2s(t)), so that the large-time asymptotics are governed

by

xn(t) ∼ 1

2npλ

(
1 + #1 − #n

npλ

)
erfc

(
(n − s(t))

√
1 − 2pλ√

2s(t)

)
(3.79)

for n− s(t) ∼ √
s(t) as t → ∞. For 1

2 < pλ < 1 the shape of the wave depends on the initial
data for all time. These results are consistent with cases I, III, and IV, where the coarse-graining
procedure reduces the effect of perturbations to fragmentation rates.

3.7. Case VII

Here fragmentation is the dominant process, with smaller clusters shedding monomers much
more readily than larger clusters.

The coagulation and fragmentation rates are given by ar = δr and br+1 = brp + εr+1 with
p < 0, and in all of cases VII–IX, the perturbations are taken to be positive random parameters
distributed according to

E[δr ] = ν E[εr+1] = ν V[δr ] = Vδν
2

V[εr+1] = Vεν
2. (3.80)

As with cases I and IV, if there are no perturbations to the rates then the partition function is
identically zero; when noise is introduced we find

Qr =
r−1∏
k=1

δk

kp + εk+1
(3.81)

so that Qr decreases rapidly in magnitude as r increases (Qr = O(νr−1)). However, since
p < 0, this ceases to be valid when r = O(ν1/p), because the perturbations have the same
order of magnitude as the deterministic part of the coefficients. When rν1/(1−p) < 1 the
approximation (3.28) is valid; however, this ceases to be hold when r = O(ν−1/(1−p)), where
the variance of the sum reaches O(1). At this point the random perturbations affect the leading-
order behaviour of the partition function.

At large times the system approaches its equilibrium solution. As in case IV, the equation
determining the progression of the diffusive wave is formally ṡ = (s − 1)p + εs − δs . On
taking expectations of this equation, all ν-dependence disappears, indicating that the noise has
no net effect on the progress of the wave. The equation ṡ = sp is valid until s = O(ν1/p),
hence s(t) follows (3.32) until t = O(ν−1+1/p). After this time, the random components of the
coefficients influence the leading-order motion of the wave. Thus there are subtle differences
between case IV (p > 0), where (3.32) holds for all time, and case VII (p < 0), where (3.32)
holds only for times up to O(ν1/p). At r = O(ν1/p) the random component of the rate
coefficients in the diffusive term in (3.30) becomes leading order. Since this term contains the
sum of two positive perturbations, there is a net increase in the diffusivity, hence the wavefront
widens as described by (3.34).

Following the coarse-graining contraction, formulae (3.35) still hold, so the noise satisfies

E[#n] = λ−pλνλ
E[En+1] = npλν

�n+1−1∑
k=�n

1

kp

V[#n] ≈ λ−2pλν2λ(Vδ + 1)λ V[En+1] ≈ Vεn
2pλν2

�n+1−1∑
k=�n

1

kp
.

(3.82)
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Due to the decay in fragmentation rates at large r , there is an aggregation size at which
the perturbations assume the same order of magnitude as the deterministic part of the rate
coefficients. To find this threshold, we equate npλ with the expectation of En+1 in (3.82). This
yields n = ν1/pλ−1+1/p, corresponding to an aggregation number of r = ν1/pλ1/p in the full
description of the model (before contraction), showing the correct order of magnitude when
compared with the full model, which gives r = ν1/p.

Using the coarse-grained rate coefficients to construct a partition function ϒN , we
find (3.38) holds for N = O(1). Together with equations (3.82) and (3.28), for R,N = O(1),
these imply

E[ϒN ] = νλ(N−1)

(N−1)!pλ

(
1 − ν

N−1∑
n=1

1

npλ

)
and E[QR] = νR−1

(R−1)!p

(
1 − ν

R−1∑
k=1

1

kp

)
(3.83)

so that for R = �N we have both expressions growing with R (or equivalently with N ),
whilst their difference only grows with logR. This shows nice agreement. At large R,N the
formulae (3.83) fail due to the noise in the fragmentation rate becoming leading order. This
occurs for R = O(ν1/(p−1)) in the latter case and, upon using (3.82), N = O(ν1/(p−1)) in the
former, again showing good agreement between the full and contracted models.

As with case IV, the system converges to equilibrium via a diffusive wave which travels
from small to large n, invading the region where the initial conditions xn = 0 have not yet
been modified, and leaving behind (at smaller n) the equilibrium solution xn = ϒn. Thus
we use the substitution ψn(t) = xn(t)/ϒn, which satisfies (3.42). Since E[#n] = O(νλ) and
E[En+1] ∼ λ1−pnp(λ−1)ν from (3.82), the continuum limit of (3.42) to O(ν) reduces to

∂ψ

∂t
= (

(n−1)pλ + λ1−pnp(λ−1)ν
) (

1

2

∂2ψ

∂n2
− ∂ψ

∂n

)
. (3.84)

At large times, the leading-order term determines the speed of the wavefront (ṡ), giving the
equation ṡ = spλ + λ1−psp(λ−1)ν. As ν → 0, the solution of this equation can be formulated
as s(t) = s0(t) + νs1(t) where

s0(t) = [(1 − pλ)t]1/(1−pλ) and s(t) ∼ s0(t)

(
1 +

νλ1−ps0(t)
1−p

2 − p − pλ

)
. (3.85)

This shows that as the wave reaches larger values of n, perturbations to the rate coefficients
influence the leading-order motion of the wave. This occurs when s ∼ n = O(ν1/(p−1)), or
when t = O(ν−1−p(λ−1)/(p−1)), which is the same order of magnitude as in the uncontracted
case. At this order of magnitude the perturbations to the rate coefficients also cause the shape
of the wavefront to be modified.

3.8. Case VIII

Here aggregation and fragmentation are finely balanced, but occur much more rapidly at small
cluster sizes than at large cluster sizes, a situation that may arise in growth processes in solution
below saturation without nucleation barriers.

In the noise-free case this system converges to the equilibrium solution cr = 1. When
noisy coefficients are introduced, defined by ar = arp + δr , br+1 = brp + εr+1, with p < 0 and
the perturbations distributed according to (3.80), then the partition function is modified to

Qr =
r−1∏
k=1

1 + k−pδk

1 + k−pεk+1
(3.86)



Renormalisation-theoretic analysis of non-equilibrium phase transitions: II 8721

and so for r = O(1), the equilibrium solution can be approximated by

cr = 1 +
r−1∑
k=1

k−p(δk − εk+1) + O(ν2). (3.87)

However, this approximation ceases to be valid at large r due to the perturbations becoming
a leading-order effect. Given that the variance of each perturbation is O(ν2), the variance of
cr in equation (3.87) is O(ν2r1−p) so that at r = ν−2/(1−p), the leading-order expression for
cr is no longer unity. At this aggregation number the cumulative effect of the perturbations
becomes as important as the leading-order term.

When we turn to the analysis of the kinetics of the approach to equilibrium, we note
the similarities between this case (where p < 0), and the approach to equilibrium in case V
for 0 < p < 1. The continuum equation (3.47) is also valid here, but whereas in case V
E[δr + εr ] = 0, here E[δr + εr ] = 2ν, so when we take the expectation of (3.47) we obtain an
equation with an increased diffusivity, namely

∂ψ

∂t
= (rp + ν)

∂2ψ

∂r2
+ prp−1 ∂ψ

∂r
. (3.88)

Thus there is a large-r region where the perturbations influence the leading-order kinetics.
This occurs for r = O(ν1/p) and larger, where noise in the diffusion term is comparable with
the deterministic part of the diffusivity. In the advection term, the noise has zero mean. Thus
for rν−1/p < 1, we expect the similarity solution ψ = f (η) with η = r/t1/(2−p) to be valid
and ψ(r, t) determined by equation (3.48); but for r � O(ν1/p), the leading-order kinetics are
influenced by the noise.

In the coarse-grained contracted system, the forward and backward rate coefficients are
given by

αn =
�n+1−1∏
r=�n

(rp + δr) βn+1 =
�n+1−1∏
r=�n

(rp + εr+1) (3.89)

and whilst (3.52) is a valid approximation for small n, it breaks down at larger n. Assuming
that the noise is distributed according to (3.80) before the contraction procedure, we find

E[#n] = E[En+1] = νλ1−pnp(λ−1)
V[#n] = Vδn

2pλν2
λn+1−1∑
k=�n

1

k2p

V[En+1] = Vεn
2pλν2

�n+1−1∑
k=�n

1

k2p

(3.90)

following the coarse-grained renormalization. The even balance of aggregation and
fragmentation is reflected in the identical expectations of #n and En+1 and in the same order
of magnitude of their variances. When n = O(ν1/p) the formulaic component of the rates
(O(νpλ)) matches the random element (providing λ is not large); this aggregation number
agrees with the analysis of the fully microscopic model.

We now use the coarse-grained rates to calculate the partition function (ϒn) for the coarse-
grained system. Equation (3.55) is valid for r = O(1); however, since p is negative the sums
are divergent at large n and large r . Although E[ϒN ] = 1 = E[QR] for all N and for all R,
the variance of ϒN grows with N according to

V[ϒN ] = ν2(Vδ + Vε)

(N−1)λ+1∑
n=1

1

n2p
(3.91)

which agrees with V[QR] for R = �n. The asymptotic expression (3.55) thus ceases to be
uniformly valid when the variance becomes O(1), namely when n = O(ν−2/(1−p)) giving the
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same order of magnitude of aggregation number (r = �n) as can be derived from the full
system of equations (3.44).

The kinetics of approach to equilibrium are similar to case V with p < 1/λ; that is by a
perturbed similarity solution rather than a moving diffusive wavefront. Since in the present
case the perturbations obey equation (3.80), when we take the expectation of equation (3.58)
we obtain

n−pλ ∂ψ

∂t
= (

1 + 2λ1−pn−pν
) ∂2ψ

∂n2
+
pλ

n

∂ψ

∂n
. (3.92)

Thus when one ignores the O(ν) terms, a similarity solution can be found; and forn < O(ν1/p),
we expect the similarity solution to give the leading-order behaviour. This solution has the form
ψn(t) = f (η) with η = n/t1/(2−pλ) as in (3.59). However, for n = O(ν1/p) and larger, another
more complicated solution takes effect, where the noise influences the dynamical behaviour
at leading order. For n larger than O(ν1/p) the system behaves as if all rates had been chosen
at random.

3.9. Case IX

The final case corresponds to a system in which aggregation dominates fragmentation at smaller
cluster sizes; at larger cluster sizes, the perturbations to both aggregation and fragmentation
rate coefficients entirely swamp this effect.

Here, we have ar = rp + δr , br+1 = εr+1 with the perturbations δr , εr+1 distributed
according to (3.80). Formally the presence of noise allows the partition function to be written
as

Qr =
r−1∏
k=1

kp + δk

εk+1
. (3.93)

With noiseless rate coefficients, the system evolves to the steady state with unit flux (J = 1);
however, using the perturbed coefficients in equation (1.5), a calculation of the steady-state
flux leads to J = 0 since at large values of r , the term 1/arQr has a positive expectation value
which is independent of r , making the sum divergent. Thus in this case the presence of noisy
coefficients changes the large-time behaviour from an approach to steady state with unit flux
to an approach to the equilibrium solution, which is given by cr = Qr where, for r = O(1),
Qr is given by equation (3.62). This expression, however, ceases to be valid for values of r
larger than O(ν−1/(1−p)). At intermediate times, before mass has been transported to larger
aggregation numbers, we expect the steady-state solution to be manifest. At larger times, the
system undergoes a complex transition from a steady-state solution to the equilibrium solution.
Evolution will then be dominated by the random perturbations to the rate coefficients, and will
follow the kinetics described in the next section.

In the coarse-grained description of the system the equation for #n in (3.68) is valid for
small n, but ceases to be valid when n = O(ν1/p), where the noise becomes leading order; thus
there is an intermediate asymptotic regime where the system remains aggregation dominated.
Using (3.80) we find the distribution of perturbations to be as follows:

E[#n] = npλν

�n+1−1∑
k=�n

1

kp
E[En+1] = λ−pλνλ

V[#n] = Vδn
2pλν2

�n+1−1∑
k=�n

1

k2p
V[En+1] = λ−2pλν2λ

[
(Vε + 1)λ − 1

]
.

(3.94)

However, at larger aggregation numbers the system is dominated by the random perturbations.
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Calculating the partition function ϒN from the coarse-grained rates we find (3.71) holds
for small and intermediate values of N . For large N , however, it fails since p is negative and
the second term becomes the same order of magnitude as the first when N = O(ν1/p). The
presence of noise transforms this case from one which approaches steady-state solution (with
L ≈ 1) to one which approaches equilibrium (i.e. L = 0), as in the microscopic system. Thus
the coarse-graining procedure has faithfully retained the structural difference that noise has
made to the full system of equations.

In the large-time limit, this case shows convergence to the equilibrium solution, since at
large aggregation numbers, the system appears identical to the case with all rates chosen at
random described below, in section 3.10. In this case the kinetics are dominated by the random
perturbations to the rates, so it is impossible to give a detailed description of the time-dependent
solution.

At intermediate times, when there is little mass in large aggregation numbers, however,
we expect the system to behave as in case VI, namely the approach to a steady-state solution.
Since the rate coefficients at small and intermediate aggregation numbers are dominated by
aggregation, we expect a diffusive wave to move into the larger-n region leaving behind
the steady-state solution xn = n−pλ. Since this moves at a rate given by (3.78), when
t = O(ν1/p−λ) the wave reaches aggregation sizes n = O(ν1/p), where the perturbations
to the rates are of the same order of magnitude as the deterministic component of the rates.
Thus after this time the system undergoes a transition from the state

xn(t) ∼
{
n−pλ for n � ν1/p

0 for n  ν1/p
(3.95)

to the equilibrium state xn = ϒn.

3.10. The system with totally random rates

The previous three sections have shown that, at large times and with the rate perturbations
as defined in section 2.1, in each of the cases VII–IX the temporal evolution tends to the
equilibrium solution rather than a steady-state solution; at large r the partition function Qr

is dominated by the perturbations, hence so too is the equilibrium solution in all three cases.
From this perspective, these three cases can then be thought of as lying in the same universality
class, namely a Becker–Döring system with ‘totally random’ rate coefficients. By this we mean
a formulation of the Becker–Döring equations (1.4) in which all the rate coefficients ar, br are
chosen at random (but remain independent of time); in the notation of this paper, we have
a = b = 0, leaving ar = δr , br = εr . Here the rates δr , εr are independent random parameters
whose expectation and variance is size independent.

If we take the monomer concentration to be fixed at unity, the governing equations are

ċr = δr−1cr−1 − εrcr − δrcr + εr+1cr+1 r � 2. (3.96)

It is possible to define a partition function Qr from the coefficients δr , εr provided none are
zero. If we assume that in the large-time limit the system will tend to a steady state

cr = Qr

(
1 − J

r−1∑
k=1

1

δkQk

)
(3.97)

then imposing the fastest possible decay on the concentrations in the limit of large r , we find

1

J
=

∞∑
k=1

1

δkQk

. (3.98)
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Since neither Qk → ∞ nor δk → ∞ as k → ∞ the terms in the sum do not decay, so the
sum diverges. We thus have J = 0, and the system must tend to the equilibrium solution
cr = Qr . To find the kinetics in the large-time limit we substitute cr = Qrψr ; then ψr satisfies
the difference equation

ψ̇r = εrψr−1 − δrψr − εrψr + δrψr+1. (3.99)

This is a system of equations similar to that with which we started in equation (3.96); the
essential difference is that ψ → 1 as t → ∞. We expect ψr(t) to be slowly varying in the
large-time limit, in turn enabling us to take the continuum limit which gives the following
partial differential equation for ψr :

∂ψ

∂t
= 1

2
(δr + εr)

∂2ψ

∂r2
+ (δr − εr)

∂ψ

∂r
. (3.100)

Thus the advective component of the process (δr−εr)
∂ψ

∂r
has zero mean (since E[δr ] = E[εr ] =

ν), whilst the diffusive component is always positive, having mean ν. The expectation of the
solution is thus ψ = 1

2 erfc(r/2
√
νt) and so we see that the system shares several similarities

with case II, notably convergence to equilibrium via the same kinetics albeit on a slower
timescale.

In cases VII and IX we expect the waves to cease moving when they reach the large-r region
where perturbations become dominant, namely when the wavefront reaches r = O(ν1/p);
which occurs after a time of t = 1/(1 − p)ν(1−p)/p2

. However, in all three cases VII–IX the
final approach to equilibrium is by a predominantly diffusive mechanism.

4. Discussion

A previous paper described in detail nine generic classes of behaviour into which the asymptotic
dynamics of the Becker–Döring equations with power law coefficients falls [19]. The nine
classes capture qualitatively different physical properties which are shared by all models within
the same class. In this paper, we have concentrated on the detailed analysis of these nine cases;
for each case we have considered the effect of the perturbations to the rate constants on the
equilibrium or steady-state solution and on the large-time asymptotics.

In cases IV–VI, where the rate constants grow with increasing cluster size, larger
perturbations could be considered, (that is the perturbations to the forward and backward
rate coefficients δr , εr are each O(1)). Because the unperturbed rates grow with r , there would
then be a large-r region where the perturbations are insignificant and a smaller-r region where
they should be taken into account. Since we are dealing with a discrete system, the small-r
region consists of a complicated finite-dimensional system joined to a simpler large-r system
whose behaviour we already know by asymptotic analysis [14]. By taking a coarse-graining
contraction with λ sufficiently large, the whole of this small r regime could be mapped to a
small-dimensional system with only a few concentrations needing to be retained. As in the
unperturbed problem analysed previously [11,19], coarse-graining retains the correct leading-
order structure of the problem, although critical exponents of p = 1 where the behaviour
changes are mapped to p = 1/λ.

Cases VII–IX are much more complex, since here the rate coefficients decay with
increasing aggregation number. Thus in the limit r → ∞, the perturbations δr , εr dominate
the partition function (Qr ) and the large-time kinetics. If we assume the perturbations are
small (as we have done here), there is a small-r region where regular behaviour occurs, and a
larger-r region where perturbations dominate the rate coefficients, the partition function and
the kinetics; in this region the system behaves as if the rate coefficients had been chosen at
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random. Following an application of the coarse-graining process the positions of these regions
remain invariant and, in the small-r region, the leading-order behaviour agrees with that of the
full model. The only case in which the large-time solution which is approached is altered by
the presence of noise is case IX, which changes from convergence to a steady-state solution in
the large-time limit into a system which converges to equilibrium. The equilibrium solution to
which cases VII and VIII approach in the large-time limit also suffer major modification due
to the presence of noise.

In renormalization-theoretic jargon, cases I–VI can be referred to as universality classes,
whereas this is not in general true for cases VII–IX, because the perturbations destabilize
the steady-state solution, modify the equilibrium solution and alter the associated large-time
dynamics of convergence to equilibrium. However, all of cases VII–IX share the same large-
aggregation-number and large-time behaviour, and so fall into a seventh universality class,
which we have referred to as the system with totally random rates (section 3.10). This
classification occurs with the rate perturbations as described in section 2.1, namely those
with size-independent mean and variance.

If an alternative form of rate-perturbations were applied to the system, then an alternative
universality classification would be produced. For example, if the rate perturbations had the
same size dependence as the power law component, that is E[δr ] = νrp and E[εr+1] = νrp

then the large-time asymptotics of cases VII–IX suffer no leading-order modification due to the
perturbations and each of these cases then corresponds to its own universality class. However,
this one-to-one correspondence of our nine special cases with universality classes only holds
in situations where the added noise decays faster than the specified power law for the rate
coefficients as r → ∞. We believe such scenarios to be somewhat artificial, thus in this
paper we have concentrated our analysis on the more generic and interesting case where the
behaviour of the rate perturbations at large aggregation numbers differs from that of the power
law.

In future work, we plan to extend and generalize these renormalization-theoretic results
to a range of other Becker–Döring systems, including ones with different forms of rate
coefficients which describe quite distinct physicochemical processes [20], as well as the
constant-density formulation of the Becker–Döring equations. It turns out that, for certain
well motivated choices of rate coefficients, the renormalization procedure is exact (in the
sense that the approximation made after equation (1.13) is not necessary). The constant-
density Becker–Döring system has the added complication of being inherently nonlinear, and
our renormalization scheme accentuates the nonlinearity, making analysis of this problem even
more challenging.
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[10] Coveney P V and Wattis J A D 1998 A Becker–Döring model of self-reproducing vesicles J. Chem. Soc. Faraday

Trans. 102 233–46
[11] Coveney P V and Wattis J A D 1999 Cluster renormalization for the Becker–Döring equations J. Phys. A: Math.

Gen. 32 7145–52
[12] van Dongen P G J and Ernst 1987 Fluctuations in coagulating systems I J. Stat. Phys. 49 879–926
[13] van Dongen P G J and Ernst 1987 Fluctuations in coagulating systems II J. Stat. Phys. 49 927–75
[14] King J R and Wattis J A D 2000 Asymptotic solutions to the Becker–Döring equations with non-constant
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